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Considering the accumulation phenomenon in public places, we investigate how the condensation of moving
bosonic particles influences the epidemic spreading in scale-free metapopulation networks. Our mean-field
theory shows that condensation can significantly enhance the effect of epidemic spreading and reduce the
threshold for epidemic to survive, in contrast to the case of without condensation. In the stationary state, the
number of infected particles increases with the degree k linearly when k�kc and nonlinearly when k�kc,
where kc denotes the crossover degree of the nodes with unity particle. The dependence of critical infective rate
�c on the parameters kmax, �, and �, is figured out, where kmax, �, and � denote the largest degree, recovery
rate, and jumping exponent, respectively. Numerical simulations have confirmed the theoretical predictions.
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I. INTRODUCTION

In the last decade, complex networks have provided an
increasingly challenging framework for the study of collec-
tive behaviors based on the interplay between the topological
structures and the dynamics at nodes. Much progress has
been achieved, such as in the aspects of synchronization,
packet delivering, epidemic spreading, and energy transpor-
tation, etc. �1–5�. We here focus on the topic of epidemic
spreading.

Epidemic spreading has been well studied in two typical
models: Susceptible-infected-susceptible �SIS� and
susceptible-infected-refractory �SIR� models �6–9�. In these
models, each susceptible node is infected with probability �
at each time step if it is connected to one infected node. At
the same time, the infected nodes are cured and become sus-
ceptible again with probability �, defining an effective
spreading rate �=� /�. A key problem in epidemic spreading
is how to figure out the threshold for epidemic to survive. In
random homogeneous networks the most significant result is
the general prediction of a nonzero epidemic threshold
�c=1 / �k� with �k� denoting the average degree �6,7�. If the
value of � is above the threshold, i.e., ���c, the infection
spreads and becomes persistent in time; otherwise, the infec-
tion dies out exponentially fast.

It has been revealed that most of the realistic networks are
scale-free �SF� networks and the results obtained on the ran-
dom homogeneous networks do not work there. For studying
how the SF topology influences the epidemic spreading,
much attention has been paid recently �1–3� and some im-
portant results have been achieved, such as the infection in
SF network can spread to the entire network even if the
probability of transmission is infinitely small, i.e., �c
= �k� / �k2��0 for large network size �10–12�. This results is
in sharp contrast to the well-known threshold phenomenon in
epidemiology �6,7�.

The above studies are mainly focused on networked static
systems where each node corresponds to a single individual
and the individuals cannot move. However, the real social

networks are based on the heterogeneous topologies of
bosonic systems, where nodes can be occupied by any num-
ber of particles and individuals can move from one node to
another. A good model to characterize this situation is the
so-called metapopulation model �13� where particles repre-
sent people moving across different subpopulations �nodes�
such as city or urban areas. Metapopulation models rely on
the basic assumption that the system under study is charac-
terized by a highly fragmented environment where the popu-
lation is structured and localized in relatively isolated dis-
crete subpopulations connected by some degree of migration.
Especially for disease spreading in the urban networks, the
spatial structure of populations is a key element in the un-
derstanding of the large scale spreading of epidemics. For
studying epidemic spreading in social networks, Colizza et
al. has recently studied a reaction-diffusion process in SF
network where the reaction �infection� takes place when par-
ticles stay in the same node �14,15�. They find that the epi-
demic persists only when the total density of particles satisfy
the condition ���c, with �c= �k�2

�k2�
�
� . In other words, there is a

critical infection rate �c= �k�2

�k2�
�
� for a fixed density � and epi-

demic survives when ���c. In the thermodynamic limit, we
have �k2�→	 for SF network and thus �c=0. Zhou et al. has
recently studied the epidemic spreading in dynamical com-
munities with different densities and found that both direct
and indirect contacts can seriously influence the safety of
communities �16�. These results open a new window of
studying the epidemic spreading from the angle of reaction-
diffusion process. We here try to widen this window a little.

On the other hand, the moving of particles may result in
accumulation and/or condensation at the hub to some extent.
In statistical physics, condensation means that a finite frac-
tion of the total particles will be condensed to a single state,
i.e., the ground state, when the temperature approaches to
zero, which is called as the Bose-Einstein condensation. We
here keep this meaning and think that there is condensation
in complex networks once a finite fraction of total particles
accumulates at the hub node. This problem was first studied
in regular lattice �17–21� and recently studied in SF networks
�22–25�. For the former, one of the necessary conditions for
condensation to occur is that the density of particles in lattice
must be over some threshold. While for the latter, it is found*zhliu@phy.ecnu.edu.cn

PHYSICAL REVIEW E 79, 016108 �2009�

1539-3755/2009/79�1�/016108�6� ©2009 The American Physical Society016108-1

http://dx.doi.org/10.1103/PhysRevE.79.016108


that the condensation may occur at any finite value of density
�23�. For studying the influence of network structure on con-
densation, Noh et al. considered a zero range process �ZRP�
of interaction in SF network and found that most of the par-
ticles may be condensed to the hub nodes �23,24�. We have
investigated how the weights of links influence the conden-
sation and found that it is possible for the weights to make
the condensation occur even when there is no attraction
among particles �25�. Considering the ZRP interaction as a
reaction and the moving of particles as a diffusion, the con-
densation phenomenon is in fact a consequence of reaction-
diffusion process. This phenomenon of condensation can be
also observed very often in the social networks or metapo-
pulation models where the individuals sometimes prefer to
accumulate at the public places and hence result in high den-
sity localization, such as at schools and malls, etc. If there is
a seed of virus and/or disease in the population, the reaction-
diffusion process will become an epidemic spreading process
and the occurred condensation will definitely influence the
epidemic spreading. Then an interesting question is how the
accumulation and/or condensation influences the epidemic
spreading.

In this paper, we will combine together the two phenom-
ena, i.e., epidemic spreading and condensation, and aim to
understand how the accumulation and/or condensation influ-
ences the epidemic spreading. Our results show that the con-
densation can significantly enhance the effect of epidemic
spreading and reduce the threshold for epidemic to survive,
in contrast to the case of without condensation. Moreover,
we have figured out the influence of parameters, such as the
largest degree, recovery rate, and jumping exponent, etc., on
the critical infective rate �c. Numerical simulations have
completely confirmed the theoretical predictions. We orga-
nize the paper as follows. In Sec. II, we present a model to
describe the epidemic spreading in the framework of ZRP
and figure out its solution through a mean-field approach.
Then in Sec. III, we make numerical simulations to confirm
the predictions given in Sec. II. Finally, we give discussions
and conclusions in Sec. IV.

II. MODELING THE EPIDEMIC SPREADING
IN THE FRAMEWORK OF ZRP

We here consider the uncorrelated configuration model
�UCM� with power-law degree distribution P�k��k−3 �26�.
We let each node of the network have an infinite capacity
and randomly set ni particles at node i. Suppose the total
number of nodes is N, then the density of particles in the
network is �=	i=1

N ni /N. At each time step, part of the ni
particles at the node i can jump out with jumping exponent �
in �0,1�. Let p�ni� be the number of people diffusing out of a
given place and/or node at a time step. Then p�ni� /ni repre-
sents the jumping rate. We here take p�ni� as

p�ni� = ni
�. �1�

�=0 means that only one of the ni particles will jump out per
each time step, indicating that the particles are attracting
each other. While in the case of �=1, all the ni particles will
jump out, implying that they are moving independently. For

the middle � between 0 and 1, the jumping out particles will
be in between 1 and ni.

At the same time, each particle jumping out from the node
i will hop randomly to one of its neighboring nodes j, i.e.,
the hopping rate takes the expression

Tj←i =
1

ki
. �2�

It has been shown that a complete condensation occurs when
���c=1 /2; otherwise, no condensation �23,24�. In conden-
sation, the hub nodes are occupied by macroscopic numbers
of particles, while the other nodes are occupied by negligible
numbers of particles.

Considering the heterogeneous structure of UCM, the hub
nodes will have larger probability to get particles than the
nodes with small links. There are two ways to describe the
evolution of particles at a node. One is the approach of ca-
nonical ensemble �17,22–24� and the other is the mean-field
approach �25�. We here take the second one. In the mean-
field approach, we transfer the description of ni for each node
to the description of the mean occupation number mk�t� for
the nodes with the same degree k, i.e., mk�t� is the average of
all the ni at the nodes with degree k. Hence mk�t� is no longer
necessary to be an integer. Correspondingly, we transfer the
jumping rate p�ni� to p�mk�=mk

�.
When mk
1, we have mk

��mk and the number of jump-
ing particles is in fact mk but not mk

� as we do not have so
many average particles mk

� at those nodes with degree k.
When mk�1, we have mk

��mk and hence the number of
jumping particles is mk

�. Let kc be the crossover degree with
mkc

=1. Except the aspect of jumping out, at the same time, a
node accepts particles from its neighbors. The incoming par-
ticles can be classified into two parts: One from the node
with mk�1 and the other from the nodes with mk�1. The
incoming particles from one neighboring node with degree
k� is P�k� 
k�mk��t� /k� when mk��t��1 and P�k� 
k�mk�

� �t� /k�
when mk��t��1, where the conditional probability P�k� 
k�
=k�P�k�� / �k� for the UCM.

We now consider the SIS model for the mobile particles.
Suppose a particle represents an agent with two states, i.e.,
susceptible and infectious, and a node represents a location
to be occupied by agents. The agents may interact with each
other only when they stay at the same location and/ or node,
thus we obtain an agent-based model. Let mI,k and mS,k be
the mean number of infectious and susceptible particles
and/or agents at those nodes with degree k, respectively. Ob-
viously, we have

mk = mI,k + mS,k. �3�

Following Ref. �14� we divide the reaction-diffusion process
into two steps. In the first step, the susceptible particles take
infection with the infected particles at the same node. In the
second step, both the susceptible and infected particles take
diffusion. Suppose the infection rate is denoted by �, which
means that each susceptible node can be infected by a prob-
ability � if it contacts an infectious. We also suppose that the
infected node can be cured automatically by a probability �.
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When the susceptible and infected agents are fully mixed,
the number of new infected agents is

�k = mS,k�1 − �1 − ��mI,k� , �4�

where the factor �1−��mI,k represents the uninfected prob-
ability when a susceptible contacts with mI,k infected agents
�27�. Equation �4� becomes �k=�mS,kmI,k when �1. Right
after the reaction or right before the diffusion, the particles
with infectious status are �1−��mI,k+�k and the particles
with the susceptible status are �mI,k+ms,k−�k. After a finite
number of evolutionary steps, the system will arrive at a
stationary distribution where we have mk�1 for k�kc and
mk�1 for k�kc. We here discuss the evolution of particles
based on the stationary solution. Considering the different
forms of number of jumping particles for k�kc and k�kc,
i.e., p�mk�=mk for k�kc and p�mk�=mk

� for k�kc, we distin-
guish the evolution of particles at the nodes with k�kc from
that with k�kc. For the nodes with k�kc, all of the mk
particles will be diffused to the surroundings, thus each of
the infectious and susceptible particles will have the possi-
bility of unity to be diffused. While for the nodes with k
�kc, only a part of mk particles, i.e., mk

� particles, will be
diffused to the surroundings, indicating that each of the in-
fectious and susceptible particles will have possibility
mk

� /mk=mk
�−1�1 to be diffused. Therefore, at each time step,

the diffused infectious particles at a node are ��1−��mI,k
+�k�mk

�−1 and the diffused susceptible particles are ��mI,k
+ms,k−�k�mk

�−1. Based on this analysis, the mean-field equa-
tions for the evolution of mI,k and mS,k with k�kc can be
given as follows:

�mI,k

�t
= − mI,k +

k

�k�� 	
k�=kmin

kc

P�k����1 − ��mI,k� + �k��

+ 	
k�=kc

kmax

P�k����1 − ��mI,k� + �k��mk�
�−1� ,

�mS,k

�t
= − mS,k +

k

�k�� 	
k�=kmin

kc

P�k����mI,k� + mS,k� − �k��

+ 	
k�=kc

kmax

P�k����mI,k� + mS,k� − �k��mk�
�−1� , �5�

where the first term −mI,k or −mS,k comes from the fact that
all the particles at the nodes with k�kc will jump out at the
next step, the second term denotes the gained particles from
the surrounding neighbors, and kmin and kmax denote the
minimum and maximum degrees, respectively. The part with
	k�=kmin

kc represents the gained particles from the neighbors

with k�kc and the part with 	k�=kc

kmax represents the gained
particles from the neighbors with k�kc. Similarly, the mean-
field equations for the evolution of mI,k and mS,k with k�kc
are

�mI,k

�t
= − mI,k + ��1 − ��mI,k + �k��1 − mk

�−1�

+
k

�k�� 	
k�=kmin

kc

P�k����1 − ��mI,k� + �k��

+ 	
k�=kc

kmax

P�k����1 − ��mI,k� + �k��mk�
�−1� ,

�mS,k

�t
= − mS,k + ��mI,k + mS,k − �k��1 − mk

�−1�

+
k

�k�� 	
k�=kmin

kc

P�k����mI,k� + mS,k� − �k��

+ 	
k�=kc

kmax

P�k����mI,k� + mS,k� − �k��mk�
�−1� , �6�

where the factor 1−mk
�−1 denotes the possibility for individu-

als to remain at their positions, the sum of the first two terms
denotes the part of jumping out, and the third term denotes
the part gained from the neighbors.

Equations �5� and �6� are the evolution equations of infec-
tious and susceptible particles and will reach the stationary
state when they evolve enough time. In the stationary state,
we may solve Eqs. �5� and �6� through the condition
�mI,k /�t=0 and �mS,k /�t=0 to get the stabilized mI,k and
mS,k. By doing this we have

mI,k = kA ,

mS,k = kB , �7�

for k�kc and

mI,k = ��1 − ��mI,k + �k��1 − mk
�−1� + kA ,

mS,k = ��mI,k + mS,k − �k��1 − mk
�−1� + kB , �8�

for k�kc, where

A =
1

�k�
 	

k�=kmin

kc

p�k����1 − ��mI,k� + �k��

+ 	
k�=kc

kmax

p�k����1 − ��mI,k� + �k��mk�
�−1�

and

B =
1

�k�
� 	

k�=kmin

kc

p�k����mI,k� + mS,k� − �k��

+ 	
k�=kc

kmax

p�k����mI,k� + mS,k� − �k��mk�
�−1� .

From the definition of kc and Eq. �7� we have A+B=1 /kc.
Equations �7� and �8� are the stationary solution of mI,k

and mS,k. From Eq. �7� it is easy to see that both mI,k and mS,k
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increases linearly with k for k�kc. Thus, the infected frac-
tion

mI,k

mk
=

A

A + B
�9�

is a constant for k�kc. While for k�kc, it is generally dif-
ficult to get the solution of Eq. �8�. When �1, however, we
can obtain the approximate solution by substituting
�k=�mS,kmI,k and the condition mS,k=mk−mI,k into Eq. �8�.
Through simple calculation we obtain

mI,k =
F�mk� + �F2�mk� + 4�kA�1 − mk

�−1�
2��1 − mk

�−1�
, �10�

where F�mk�= ��mk−���1−mk
�−1�−mk

�−1. Considering mk
�1 for k�kc, we have approximately mI,k�mk. By sum-
ming the two equations of Eq. �8� we have mk= �k /kc�1/�,
thus we obtain

mI,k � � k

kc
�1/�

−
�

�
−

1

���k/kc��1−��/� − 1�
� k1/� for k � kc,

�11�

indicating mI,k increases nonlinearly with k for k�kc. The
threshold kc can be determined by the self-consistent condi-
tion 	k=kmin

kc mkP�k�N+	k=kc

kmaxmkP�k�N=�N, which gives

�
kmin

kc

dkP�k�
k

kc
+ �

kc

kmax

dkP�k�� k

kc
�1/�

= � . �12�

Thus, kc depends on the density �. A larger density � corre-
sponds to a smaller kc.

Furthermore, from Eq. �10� we obtain

mI,k

mk
� 1 −

�

�mk
−

1

�mk�mk
1−� − 1�

= 1 −
�

�
� kc

k
�1/�

−
1

�
� kc

k
�1/� 1

� k

kc
��1−��/�

− 1

, �13�

indicating that the infected fraction mI,k /mk will increase
with the degree k and the infection rate � but decrease with
the recovery rate � and the jumping exponent �. Especially,
from Eq. �13� we have mI,k /mk�1 for k�kc. Obviously, Eq.
�13� does not work for the case of �=1. In this situation, we
should go back to the approach used by Colizza et al. in Ref.
�14� as there is no accumulation.

Without condensation, the threshold for epidemic to sur-
vive is �c��k�2 / �k2� �14�. With condensation, the threshold
can be figured out by letting mI,kmax

�0, which gives

�c � � kc

kmax
�1/�

�� +
1

� kmax

kc
��1−��/�

− 1� . �14�

Considering that kc��kmax�1−�/�c for ���c �24�, Eq. �14� be-
comes

�c � kmax
−1/�c�� +

1

kmax
�1−��/�c − 1

� � kmax
−1/�c� �15�

for ���c. That is, �c will be a small constant value for �
��c and then gradually increase with � according to Eq. �14�
for ���c. Equations �7�, �9�, �11�, �13�, and �15� are our
main results. We will confirm them numerically in the next
section.

III. NUMERICAL SIMULATIONS

In numerical simulations, we would like to use an uncor-
related heterogeneous network, i.e., the UCM network, to
confirm the theoretical predictions. We first construct a UCM
network with degree distribution P�k��k−3, size N=2�104,
and the constraints m=3
k
N1/2, according to the algo-
rithm given in �26�. Then, we randomly put 1�104 particles
at the N nodes, i.e., the density �=0.5, and let them evolve
according to Eqs. �1� and �2�. After the transient time, it is
easy to observe the particle condensation when ���c=0.5.
For understanding how the condensation influences the epi-
demic spreading, we randomly choose a few particles as the
seeds of virus and/or disease, i.e., they are the infectious.
Then, the infection process begins. After the transient pro-
cess of infection, the number of infected particles will be
stabilized. As the stationary state is a dynamical equilibrium,
we make time average to reduce the fluctuation of mI,k

and mS,k. That is, we let mI,k= 1
T	t=1

T mI,k�t� and mS,k

= 1
T	t=1

T mS,k�t� with T=104. For reducing the random effect
caused by the initial conditions, we make average of mI,k and
mS,k on 100 realizations of different initial infectious par-
ticles. Figure 1 shows the results for �=0.1 and �=0.01,
where �a� represents the distribution of mI,k on different k
and �b� the fraction mI,k /mk on different k, and the “squares,”
“circles,” and “triangles” in both �a� and �b� denote the cases

FIG. 1. �Color online� slope--� Infected particles in the station-
ary state with “squares,” “circles,” and “triangles” denoting the
cases of �=0.1, 0.2, and 0.5, respectively. The parameters are cho-
sen as N=20 000, �=0.5, �=0.01, and �=0.1. �a� mI,k versus k; �b�
the fraction mI,k /mk versus k.
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of �=0.1, 0.2, and 0.5, respectively. From Fig. 1�a� it is easy
to see that all the slopes of the three cases are unity for
k�kc and the slope is approximate 10.0 for the case of
�=0.1, 5.0 for the case of �=0.2 and 2.0 for the case of
�=0.5 when k�kc, i.e., they are approximate 1 /� for
k�kc, confirming Eqs. �7� and �11�. From Fig. 1�b� we see
that the fraction mI,k /mk is a constant for k�kc and a non-
linear increasing function for k�kc, confirming Eqs. �9� and
�13�. Especially, the fraction mI,k /mk approaches to unity for
those nodes with the largest k when ���c, indicating that
most of the particles at the hub nodes are infected because of
the condensation.

For confirming the influence of parameters �, �, and � on
the fraction mI,k /mk in Eq. �13�, we take k=kmax as an ex-
ample. Figure 2 shows the results where �a� represents
mI,kmax

/mkmax
versus �, �b� mI,kmax

/mkmax
versus �, and �c�

mI,kmax
/mkmax

versus �. In Fig. 2�a� we fix �=0.01 and let the
“squares,” “circles,” and “triangles” denote the case of
�=0.2, 0.5, and 1.0, respectively. Obviously, the fraction
mI,kmax

/mkmax
in the case of �=1 survives only for a very

small �; while the cases for �=0.2���c=0.5� and
�=0.5�=�c� survive for large �, indicating that the conden-
sation enhances the effect of the epidemic spreading signifi-
cantly. This point can be seen more clear in Fig. 2�b� where
we fix �=0.1 and let the “circles” and “triangles” denote the
cases of �=0.01 and 0.05, respectively. It is easy to see that
the fraction mI,kmax

/mkmax
is approximate unity for ���c and

gradually decreases to zero for ���c. In Fig. 2�c� we fix
�=0.1 and let the “circles” and “triangles” denote the cases
of �=0.2 and 0.5, respectively. It is easy to see that the

needed minimum � for the surviving of mI,kmax
/mkmax

is much
larger in the case of �=0.5 than that of �=0.2, confirming the
condensation enhanced epidemic spreading again. These re-
sults are completely consistent with Eq. �13�.

Finally, we check the relationship between the critical �c
and the jumping exponent � for a fixed �. By gradually
increasing � from zero, we check the ratio mI,kmax

/mkmax
. �c

is the transition point when the ratio mI,kmax
/mkmax

changes
from zero to positive. Figure 3 shows the result. It is easy to
see that �c is a very small constant value for ���c and
increases with � for ���c, confirming Eqs. �14� and �15�.
Furthermore, from Fig. 3 we see that the �c for ���c is
much smaller than that of �=1 with no condensation, indi-
cating that the condensation reduces �c significantly.

IV. DISCUSSIONS AND CONCLUSIONS

Condensation favorite epidemic spreading can be under-
stood as follows. In the condensation, most of the particles
are condensed at the hub nodes. Thus, the surviving of epi-
demic in SF network is equivalent to the surviving of epi-
demic at the hub. Each particle at the hub contacts the other
mkmax

−1 particles and can be considered as having mkmax
−1

links, hence the threshold is �c�1 / �mkmax
−1���kc /kmax�1/�

=kmax
−1/�c =1 /kmax

2 , which is much less than �c= �k�2

�k2�
�
� �1 / �k2�

for the case of without condensation �14�. The result of Ref.
�14� is a specific case of our model with �=1.

Our results may be useful in controlling the epidemic
spreading. Consider the fact that people are moving for some
purposes and accumulate at the public places to a certain
degree at sometimes and disperse at another time, which cor-
responds to different degrees of condensation with varying �
from zero to unity. Reducing epidemic spreading means
keeping � around one. Therefore, our results provide a theo-
retical evidence for reducing the epidemic spreading by pre-
venting people to accumulate at the public places.

In conclusion, through both theoretical analysis and nu-
merical simulations, we show that the dynamical condensa-
tion favors the spread of the infectious disease. Our study is
based on a reaction-diffusion process where the reaction is

FIG. 2. �Color online� Influence of parameters �, �, and � on
the fraction mI,kmax

/mkmax
with N=20 000 and �=0.5. �a�

mI,kmax
/mkmax

versus � for �=0.01 and the “squares,” “circles,” and
“triangles” denote the cases of �=0.2, 0.5, and 1.0, respectively. �b�
mI,kmax

/mkmax
versus � for �=0.1 and the “circles” and “triangles”

denote the cases of �=0.01 and 0.05, respectively. �c� mI,kmax
/mkmax

versus � for �=0.1 and the “circles” and “triangles” denote the
cases of �=0.2 and 0.5, respectively.

FIG. 3. The critical �c versus the jumping exponent � with
N=20 000, �=0.5, and �=0.1.
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modeled by a SIS dynamics inside the nodes of the metapo-
pulation network, and the diffusion is defined by a mobility
rate out of a given node that depends on the population size
of that node. We find that the infected fraction is a constant
for the nodes with k�kc but close to unity for the hub nodes.
The threshold �c is a very small constant for ���c and then
gradually increase with � for ���c. Our results are based
on the condensation in SF networks but the benefit of con-
densation on epidemic spreading is not limited to the SF

networks but also works for other networks, provided that
there is condensation there.
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